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Objective: This study evaluates the association of serum retinol, hepcidin levels, and anemia in children.

Methods: This cross-sectional study included 312 children, ages 6 to 59 mo, from Rio de Janeiro, Brazil. The
association between hepcidin and retinol levels, hematologic parameters, and body mass index (BMI) was
analyzed using a generalized linear model with and without adjustment for C-reactive protein (CRP) level.
Logistic regression analysis was used to test anemia as an outcome and serum retinol level as a predictive

Il:ey W olrds: variable using the odds ratio (OR) function.
Ale]telrr::)ia Results: Anemia was present in 14.6% of the children, 5.8% presented iron deficiency anemia, and 9.6% had vitamin
Inflammation A deficiency. The increase in serum retinol levels reduced the chances of anemia (OR = 0.13; confidence

interval = 0.29—0.59). When CRP level was not adjusted for in the multiple regression analyses, retinol, ferritin lev-
els, and BMI/age were predictors of serum hepcidin levels (8 = —3.36, 0.14, 1.02, respectively; P = 0.032). Accord-
ingly, serum retinol levels were inversely associated with CRP levels (3 = —0.025 and P < 0.001).

Conclusions: The association between serum retinol and hepcidin levels in children ages 6 to 59 mo seems to
be dependent on inflammation. Taken together, the results reinforce the need for the development of further

Hepcidin, Children

studies to better understand the relationship between vitamin A and anemia of inflammation.

© 2021 Elsevier Inc. All rights reserved.

Introduction

Anemia and vitamin A deficiency (VAD) are major public health
problems | 1—3]. Worldwide, anemia affects approximately 273 million
children (42.6%), and VAD is detected in approximately 190 million
preschool-aged children (33.3%) [2,3]. In Brazil, a preliminary report of
the National Study on Child Food and Nutrition (ENANI 2019) has
shown that the national prevalence of anemia and VAD is 10.0% and
6.0%, respectively, among children under 5 y of age [1].

The main causes of anemia are believed to be iron deficiency and
inflammation, and the high-risk groups are infants, preschoolers,
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women of reproductive age, and pregnant women [2,4,5]. Iron defi-
ciency anemia can cause functional changes in the body, such as
delayed development, impaired cellular immunity, and decreased
intellectual capacity [6]. Iron deficiency may occur because of several
causes, such as inadequate intake, increased loss, changes in absorption
pattern, or changes in bioavailability of iron.

It is possible that a functional deficiency of iron develops even
when the iron stores in the body are adequate because of changes
in iron homeostasis, as it occurs in the presence of inflammation
[5,7]. Anemia of inflammation has been characterized as mild to
moderately severe anemia, with hemoglobin concentrations rang-
ing from 7 to 12 g/dL [5]. It develops in the context of systemic
inflammation, due to the decrease in red blood cell production,
and it is accompanied by a modest reduction in half-life of red
blood cells. Unlike iron deficiency anemia, in anemia of inflamma-
tion, iron stores are preserved. Thus, anemia of inflammation is pri-
marily a disorder of iron distribution [5].

Iron homeostasis is regulated by two main mechanisms: intra-
cellular and systemic. Systematically, iron balance requires com-
munication between absorption, use, and storage, which is carried
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out through hepcidin; hepcidin is a hormone that acts as a negative
regulator of serum iron concentration and plays a key role in iron
homeostasis in the body. Inflammatory processes activate its syn-
thesis, and its action consists of blocking the duodenal absorption
of iron and efflux of iron from reticuloendothelial macrophages
that recycle senescent red blood cells [8—10]. Therefore, the rela-
tionship between hepcidin and inflammation can contribute to the
development of anemia of inflammation [5,7]. Relatively mild sys-
temic inflammatory states, such as obesity, are clinically relevant
and may induce the increase in serum hepcidin levels [5,11].

VAD has also been linked to inflammatory processes [12—15].
Inflammation can cause or be caused by VAD [16]. The existence of
a relationship between VAD and anemia is well recognized
[17-19]. It is also known that vitamin A supplementation reduces
the prevalence of anemia [14,20,21]. This relationship can be
explained by several vitamin A-related biological mechanisms,
such as the increase in the growth and differentiation of erythro-
cyte progenitor cells [14,22], potentiation of immunity, reduction
of inflammation [23,24], and modulation of bioavailability and
mobilization of tissue iron stores [25-27], which may be influ-
enced by inflammation [5,14,20,21]. However, the pathogenesis of
anemia due to VAD has not been well characterized.

Experimental studies have shown that vitamin A induces the
synthesis of proteins responsible for iron transport in duodenal
cells and that VAD increases hepcidin gene expression [25,27] and
compromises its signaling pathway [23]. Therefore, it is plausible
that in humans retinol may affect iron homeostasis through hepci-
din modulation and that VAD can lead to the accumulation of this
mineral in tissues.

The present investigation aimed to study the association
between retinol and hepcidin levels in children under 5 y of age. It
is suggested that VA is predictive of anemia because of its influence
on hepcidin levels. The results of this study can contribute to strat-
egies for the prevention and treatment of anemia.

Methods

This cross-sectional study was carried out in a subsample of children ages 6 to
59 mo who were under the primary health care of public health system (Sistema
Unico de Satide) in the city of Rio de Janeiro, from a larger study “Anemia and vita-
min A Deficiency in Preschoolers: Magnitude in a Large Metropolis and Validation
of Diagnostic Methods (VITANEMIA)” [30] that studied a probabilistic sample of
this group. Children with infectious diseases such as pneumonia and otitis, sickle
cell disease, and liver diseases were excluded from the study.

The size of the subsample used in the present study was calculated using the
STATA v.13 program. Correlation values between retinol and hepcidin levels were
considered continuous variables with the following parameters: R1 (null value) of
0.00, R2 (value observed in the literature) of 0.40 [24], absolute study precision of
0.10, and 95% confidence interval (CI) [28]. By applying these parameters, the cal-
culated sample size was 62 children. For the development of this study, a database
of 312 children that included the variables of interest was used.

The Rio de Janeiro Municipal Health Office Ethics Committee for Research with
Humans (no. 203A/2013) approved this study. The study was conducted only on
children whose parents or guardians agreed to their participation and signed a
free and informed consent form.

Data collect

Data were collected from July to December 2014. The guardians who agreed to
participate in the study attended the primary health care and answered a ques-
tionnaire about sociodemographic characteristics, their child's health status, and
other data of interest related to the larger study.

Blood samples were collected by venipuncture by trained clinical pathology
technicians with experience in collecting blood from children. After collection, the
samples were placed in two tubes: one with a gel clot activator for retinol and hep-
cidin levels and other serum analyses, and the other with ethylenediamine tetra-
acetic acid for hemoglobin analysis. The gel clot activator tube was centrifuged for
10 min in a Centribio portable centrifuge (model 80-2B, speed of 4000 rpm), was
kept at 8°C for up to 4 h after blood collection, and was protected from light. The
serum was then aliquoted in amber tubes and stored at —80°C until analysis.
Weight was measured using a portable Tanita scale. Length was measured using a

Sanny anthropometer (Sao Bernardo do. Campo, SP, Brazil), and height was mea-
sured using Alturexata stadiometer (Belo Horizonte, MG, Brasil). Trained professio-
nals measured the weight, length, and height. Nutritional status was assessed
using the following indices: weight/age (W/A), height/age (H/A), and body mass
index for age (BMI/A) were calculated using the growth reference data [29]. More
details are available from previously published studies [30].

Laboratory analysis

Blood samples were processed for hemoglobin analysis at the Lipids Labora-
tory of our University. The ethylenediamine tetraacetic acid tube was subjected to
automated counting in an Automated Hematological Counter XS1000 i Sysmex
using a Stromatolyser-4 DS-Sysmex on the same day that the blood was collected.
Serum retinol was measured by high-performance liquid chromatography at the
Physiopathology and Nutrition Biochemistry Laboratory of our University using an
adapted extraction method [31]. Serum concentrations of ultrasensitive C-reactive
protein (CRP) were analyzed using nephelometry (Biosystems). An immunoenzy-
matic assay was performed to analyze serum ferritin (Symbiosys kit, ALKA Tecno-
logia, Sao Paulo, Brazil) and bioactive serum hepcidin-25 levels (DRG Instruments
GmbH, Marburg, Germany). The manufacturer’s instructions were followed. The
coefficient of variation of the measurements of retinol, hepcidin, ferritin, CRP, and
hemoglobin levels were 7.7%, 5.4%, 2.5%, 8.8%, and 0.45%, respectively.

Variables of interest

Sociodemographic and health variables included were sex, age group, family
income in American dollars, mother's education, presence of anemia (hemoglobin
level <11 g/dL) [2], iron deficiency anemia (hemoglobin level <11 g/dL and ferritin
level < 2 pg/L when CRP was < 5 mg/L; or ferritin <30 pg/L when CRP was
>5 mg/L) [7], and VAD (retinol level < .70 wmol/L) [32], or VAD adjusted for
inflammation [33], W/A, H/A, and BMI/A. The primary outcome was hepcidin level
(ng/mL), which was analyzed as a continuous variable. The following variables
were tested as hepcidin level prediction variables: serum retinol level (pmol/L),
hematologic and biochemical parameters (levels of ferritin [g/L], hemoglobin [g/
dL], hematocrit [%], mean corpuscular volume [fL], mean corpuscular hemoglobin
[pcg], mean corpuscular hemoglobin concentration [%], and leukocytes [thousand/
mm?]), BMI (z-score), and CRP level (mg/L). Sex and age groups were included as
adjustment variables.

Data analysis and statistical treatment

Data were analyzed using STATA software (version 13.0; StataCorp LLC, Col-
lege Station, TX, USA). Descriptive analysis of the data was performed. The fre-
quency distributions, measures of central tendency, and dispersion were
calculated. A Shapiro-Wilk test was used to analyze the normality of the continu-
ous variables.

As the outcome variable (hepcidin) presented positive asymmetrical distribu-
tion, we used a generalized linear model with gamma family identity function to
assess the association between hepcidin levels, serum retinol levels, other hemato-
logic parameters (levels of hemoglobin, hematocrit, mean corpuscular hemoglo-
bin, mean corpuscular volume, mean corpuscular hemoglobin concentration and
ferritin), CRP level, and BMI. The analyses were performed with and without
adjusting for CRP levels. In both analyses, sex, age, family income in American dol-
lars, and mother's education were adjusted for, following the backward protocol.

Multiple logistic regression analysis was performed, in which anemia was
tested as an outcome and VAD and retinol levels as predictor variables after
adjusting for sex, age, BMI/A (z-score), CRP, family income and mother's education.
In both logistic and generalized linear model analyses, variables that presented P <
0.2 in the simple analyses were included in the multiple regression models. Subse-
quently, a significance value of 5% was adopted for the multiple regression analy-
ses to obtain the final model.

Simple linear regression analyses were performed in which CRP (mg/L) was
considered as the dependent variable and retinol (wmol/L) or VAD (presence) as
the independent variables. The adjustment variables were age, sex, family income,
maternal education and Z-BMI/A. A significance value of 5% was adopted.

Results

In this study, 312 children aged 6 to 59 mo were included. Of
these, approximately 67% were older than 24 mo, and 52% were
male (Table 1). The prevalence of anemia and VAD was 14.6% and
9.6%, respectively, and 5.8% of the children presented iron defi-
ciency anemia. Because of the study design, in which all children
were users of the Sistema Unico de Satde, maternal education was
primarily at secondary school level and the family income was
mostly less than $619.
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Table 1 Table 2

Distribution of selected characteristics of children ages 6 to 59 mo from Brazil. Retinol status, iron and inflammatory markers of children ages 6 to 59 mo
Sociodemographic and health variables n (%) Variables Median (IQR) P25 P75
Sex Hepcidin (ng/mL) 6.57 (6.24) 448 10.72
Female 151 (48.40) Hemoglobin (g/dL) 11.90 (1.30) 11.30 12.60
Male 161 (51.60) Ferritin (ug/L) 31.00 (29.00) 16.00 45.00
Age range (months) Hematocrit (%) 35.80(3.70) 34.00 37.70
6-23 104 (33.33) Retinol (umol/L) 1.00 (0.32) 0.84 1.16
24-59 208 (66.67) CRP (mg/L) 0.04 (0.22) 0.01 0.23
Weight/age (z score)* Leukocytes (thousand/mm?) 8.70(3.90) 7.00 10.90
<-30 2(0.64)
-30 |-20 2(0.64)
20420 (92.31) Table 3
>20 20(6.41) Logistic regression analyses with anemia as the dependent variable.
Height/age (z score)”
~-30 2(0.64) Independent variables B OR 95% CI P
'3'0;0’2'0 2;3 (3'5] g Retinol (pmol/L) 208 013 0.029-0.56 <0.001
2 2. . (95.19) Presence of VAD 0473 161  0578-446 0.364
BMI/age (z score)
<-30 2(0.64) Adjustment were made for sex, age, BMI/A (z-score), CRP, family income and moth-
-30 -20 0(0.00) er's education.
—2.0 }4 1.0 204 (65.38) Cl, confidence interval; BMI, body mass index; OR, odds ratio; VAD, vitamin A
1.042.0 74(23.72) deficiency
2.0 |—3.0 23(7.37)
>3.0 9(2.88)
Family income in American dollars . . . . .
155 8(2.58) When performing multiple regression analysis, retinol was not
155—309 29(9.35) significantly associated with hepcidin (P = 0.36). However, in the
310-619 136 (43.80) crude model, without adjustment for CRP level, serum retinol, fer-
629(;6929 gg(}ggg) ritin, and BMI/A (B = —3.36, 0.14, 1.02, respectively) remained in
= . (17.10) the final model (Table 4). The socioeconomic indicators included in
Did not know how to inform 25 (8.06) . . A .
Mother’s education the model did not influence hepcidin levels in the study popula-
Lower primary school 64 (20.71) tion. Alternatively, VAD was tested as an independent variable,
Primary school 99(32.04) replacing retinol concentrations. However, in both the crude and
Secondary school 133 (43.04) the CRP-adjusted model, VAD was not significantly associated with
Higher education 11 (3.56) h idin (d h
Prevalence of anemia’ 45 (14.56) epcdin (data not shown).
Iron deficiency anemia 18 (5.80)
Prevalence of VAD' 30(9.62) Discussion
Prevalence of VAD, adjusted for inflammation [ 29(9.32)
CRP >5 mg/L 1(0.32)

*Classification according to World Health Organization [29].

fPresence of anemia: hemoglobin level <11 g/dL[2].

‘Presence of iron deficiency anemia: hemoglobin level <11 g/dL and ferritin <12
pg/L when CRP is <5 mg/L or ferritin is <30 pg/L when CRP is >5 mg/L[7].
SPresence of VAD: retinol level <0.70 wmol/L [32]. n =312.

IPrevalence of VAD, adjusted for inflammation [33].BMI, body mass index; CRP, C-
reactive protein; VAD, vitamin A deficiency

As shown in Table 2, the studied children did not present high
levels of inflammation, which was expected based on the exclusion
criteria. Retinol P25 levels were found to be above the value con-
sidered adequate, corroborating the low prevalence of VAD. In
addition, the median ferritin and P25 values were above the lower
limit, corroborating the finding of a low prevalence of iron defi-
ciency among the children.

Logistic regression showed that an increase in serum retinol level of
1 pmol/L reduced the chances of anemia occurring by 87% (OR = 0.13)
in children aged 6 to 59 mo (Table 3). On the other hand, VAD was not
significantly associated with anemia (Table 3). Similarly, serum retinol
levels were inversely associated with serum CRP levels (3 = —0.2317,
P = 0.006; CI = —0.398 to —0.065; data not shown) but VAD was not
significantly associated with CRP concentrations (3 = -0.4429,
P=0.070; CI=-0.9221 to 0.0362; data not shown).

The simple analyses showed a direct and significant association
between hepcidin level and CRP level (3 = 11.33, P < 0.001), ferritin
level (3 = 0.15, P < 0.001), leukocyte counts (3 = 0.81, P < 0.001), W/A
(B =0.78, P=0.08), BMI/A (3 = 1.17, P < 0.01), and an inverse and sig-
nificant association with retinol (8 = —3.67, P = 0.06) (data not shown).

In this study, serum retinol levels were associated with serum
hepcidin levels, and this association was dependent on inflamma-
tion. To the best of our knowledge, this is the first study to assess
this association in children ages 6 to 59 mo. Inflammation is known
to greatly increase hepcidin synthesis, which is important in the
pathogenesis of anemia of inflammation [5]. The results presented
in this study suggest that vitamin A may play a role in the patho-
physiology of anemia of inflammation, in which hepcidin is an
important mediator, corroborating findings from previous experi-
mental studies [23,25,26,27].

We observed that an increase in serum retinol level reduced the
chances of anemia. Although the biological mechanisms by which
VA can modulate the development of anemia are not completely
clear, it is known that VA is necessary for hematopoiesis [22]. Fur-
thermore, previous data indicated that VAD can induce and aggra-
vate inflammation [16,36,37]. It is known that the production of
hepcidin is increased in the presence of inflammation as a defense
mechanism of the human body to decrease the extracellular avail-
ability of iron. This may lead to functional iron deficiency, and con-
sequently, anemia of inflammation [5,34,35]. These data supported
a line of reasoning in which VAD could modulate hepcidin and
cause anemia. However, in the present study, VAD was not signifi-
cantly associated with CRP, hepcidin or anemia, but serum retinol
concentrations were inversely and significantly associated with
CRP, hepcidin and anemia. In the multiple regression model with-
out adjustment for CRP level, an inverse and statistically significant
association between retinol and hepcidin levels was observed. This
association did not occur when the model was adjusted for CRP
level. This result is in agreement with the possibility that
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Table 4
Generalized linear model analyses with hepcidin as the dependent variable
Not adjusted for CRP Adjusted for CRP
B 95% Cl P B 95% Cl P

Retinol (pumol/L) -3.36 —6.38t00.33 0.03 -143 —4.19t0 1.33 0.309
Ferritin (pg/L) 0.14 0.09-0.19 <0.001 0.10 0.06-0.15 <0.001
BMI/A (z-score) 1.02 0.43-1.61 <0.001 0.70 0.20-1.21 0.010
CRP (mg/L) - - - 8.06 3.72-12.40 <0.001

GLM to assess the association between hepcidin levels, serum retinol levels, hematologic parameters, CRP level, and BMI/A. The analyses were performed with and without
adjustment for CRP, both adjusted for sex and age, family income, and mother’s education. AIC = 6.5183. AIC, Akaike information criterion; BMI, body mass index; CRP, C-reac-

tive protein

inflammation might modulate the association between retinol and
hepcidin. It is worth noting that relatively mild systemic inflamma-
tory states may induce the increase in serum hepcidin levels [5,11].

As far as we know, only one study previously investigated the
association between hepcidin and retinol. A cross-sectional study
carried out in Mexico with 783 individuals over 60 y of age showed
that hepcidin levels, after adjusting for sex, age, and inflammation,
were significantly higher in the group with VAD than in the group
without VAD, showing that VAD status was inversely associated
with hepcidin levels [24].

Further studies are needed to elucidate how the iron regulatory
system works in children and to identify factors that can lead to
anemia of inflammation in preschoolers. It is worth mentioning
that the children studied here had at most low-grade chronic
inflammation, which, nevertheless, appeared to influence serum
hepcidin levels. Furthermore, hepcidin serum levels can vary dur-
ing human growth and development [3,38,39,40].

In the present study, BMI/A was directly associated with serum
hepcidin levels, independent of inflammation. Previously, a study
carried out in the state of Bahia, Brazil, with 376 children showed
that overweight children had a higher prevalence of tissue iron
deficiency, as measured by serum ferritin level (30.6 versus 12.5%,
respectively; P = 0.002) and chronic inflammation (a-acid glyco-
protein-1 > 25 pmol/L) (189 versus 10.0%, respectively;
P = 0.025), compared with their normal-weight counterparts. Tis-
sue iron deficiency in those preschoolers was associated, at least in
part, with adipose-related inflammation. The role of adiposity-
related inflammation in tissue iron deficiency should always be
considered, even in groups of children with a relatively low preva-
lence of overweight [11].

Given that anemia and VAD are more prevalent in the lower
socioeconomic strata [3,13], socioeconomic indicators were
included in the multiple regression model. However, possibly
owing to the socio-economic homogeneity of the studied sample,
we were able to verify that the relationship between vitamin A
and hepcidin levels seems to exist regardless of the influence of
socioeconomic conditions.

In addition, the inverse association observed between serum
retinol and CRP levels corroborates the protective effect that reti-
nol seems to exert against anemia, wherein an increase of 1 pmol/
L retinol reduced the chances of anemia by 87%. The association
between VAD and anemia is well documented [19,41-43]. Serum
retinol level has been shown to be directly associated with hemo-
globin, hematocrit, transferrin saturation, and iron levels [41,44].
However, in the present study, VAD was not associated with hepci-
din while retinol concentrations were. Inflammation is believed to
reduce plasma retinol levels owing to a decrease in the concentra-
tion of retinol transport proteins 24 h after the onset of infection
[33]. However, a reduction in the prevalence of anemia, an
improvement in anemia after vitamin A supplementation, or both,
has also been observed [14,20,21,45].

Here, the observed prevalence of VAD was 9.6%. Since 2005, the
Ministry of Health of Brazil has been developing the National Vitamin
A Supplementation Program in areas considered to be at risk. In 2012,
the program was expanded to the entire country, including the South-
east region (area where the study is located). Important measures
were implemented by the program for children: promotion of exclu-
sive breast-feeding up to the sixth month and complementary breast-
feeding up to 2 y of age or more; promotion of adequate and healthy
diet, ensuring information to encourage the consumption of foods
sources of vitamin A by the population; periodic and regular prophy-
lactic supplementation of children ages 6 to 59 mo, with megadoses of
vitamin A. Currently, the program has been less effective, but the data
analyzed in this study were collected in 2014, when these public poli-
cies were more effective.

The results of the present study corroborate previous findings
[46,47] regarding the association between hepcidin and ferritin
levels or another indicator of iron stores in the body. Limitations of
the present study include the cross-sectional design, which limits
the ability to infer causality. Further studies are needed to explore
this issue because the association between hepcidin and vitamin A
is far from obvious. Vitamin A can reduce inflammation. Con-
versely, inflammatory processes can decrease vitamin A concentra-
tions [16]. Therefore, it is worth noting that many chronic
inflammatory diseases can reduce serum retinol concentrations.
So, ultimately, the study design did not allow us to understand
whether the decrease in retinol concentrations caused inflamma-
tion and, consequently, hepcidin modulation, or whether inflam-
matory conditions modulated both retinol and hepcidin.
Regardless, the results suggested that vitamin A is associated with
the key molecules of the anemia of inflammation.

The association between hepcidin level and inflammation evi-
denced in this study has been previously reported [48,49]. Given
the importance of hepcidin in iron homeostasis, its level has
already been suggested as a useful indicator for differentiating iron
deficiency anemia and inflammation related anemia [5].

The observed association between retinol and hepcidin levels
may explain why strategies to control anemia based solely on iron
supplementation have a limited effect on the overall prevalence of
anemia. Here, we observed that iron deficiency anemia was pres-
ent in approximately only one-third of the children with anemia.
Therefore, it is necessary to improve our understanding about the
relationship between vitamin A, hepcidin levels, and anemia in
children.

Conclusion

The association between serum retinol and hepcidin levels
seems to be dependent on inflammation in children ages 6 to 59
mo. Taken together, the results reinforce the need to develop fur-
ther studies to better understand the relationship between vitamin
A and anemia of inflammation.
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